当前位置:首页 > 文化 > 正文内容

二次函数的图像(二次函数的图像关于y轴对称是真命题还是假命题)

2023-02-11 16:30:08文化828

大家好,小活来为大家解答以上的问题。二次函数的图像和性质教学反思,二次函数的图像这个很多人还不知道,现在让我们一起来看看吧!

二次函数的图像(二次函数的图像关于y轴对称是真命题还是假命题)

1、二次函数 二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

2、二次函数表达式的右边通常为二次三项式。

3、II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。

4、IV.抛物线的性质1.抛物线是轴对称图形。

5、对称轴为直线x = -b/2a。

6、对称轴与抛物线唯一的交点为抛物线的顶点P。

7、特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b^2;)/4a ]。

8、当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

9、3.二次项系数a决定抛物线的开口方向和大小。

10、当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

11、|a|越大,则抛物线的开口越小。

12、4.一次项系数b和二次项系数a共同决定对称轴的位置。

13、当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

14、5.常数项c决定抛物线与y轴交点。

15、抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

16、Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

17、Δ= b^2-4ac<0时,抛物线与x轴没有交点。

18、X的取值是虚数(X=-b加减 根号内B2-4ac的值的相反数,乘上虚数i,整个式子除2aV.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2;+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。

19、函数与x轴交点的横坐标即为方程的根。

20、 你复数还没学吧,象涉及到虚数的就不用看了。

本文到此分享完毕,希望能帮助到大家。

扫描二维码推送至手机访问。

版权声明:文章内容摘自网络,如果无意之中侵犯了您的版权,请联系本站,本站将在3个工作日内删除。谢谢!

本文链接:http://xixia168.cn/n/wh/261368.html

标签: 函数图像

“二次函数的图像(二次函数的图像关于y轴对称是真命题还是假命题)” 的相关文章

心理学跨考考研难吗(考研最好考的十大专业)

心理学跨考考研难吗(考研最好考的十大专业)

免费心理学考研论坛(哪个是最好的心理学考研辅导机构)心理学阅读2018-08-02 09:45:38 2019年考研的日子越来越近了。想报考心理学研究生的同学们,你们复习的怎么样了? 最新修订的《世界心理学》出版了两本心理学研究生书籍: 心理学考研1200重难点问题 心理学考研重难点手册:基础备考...

关于张曦文演的电视剧的介绍(张曦文演的电视剧)

关于张曦文演的电视剧的介绍(张曦文演的电视剧)

大家好,小编丹尼来为大家解答这个问题。张曦文演的电视剧,关于张曦文演的电视剧的介绍很多人还不知道,现在让我们一起来看看吧!1、张曦文,1980年03月07人生于中国黑龙江省哈尔滨市,女演员、歌手,毕业于中央戏剧学院,代表作《浪漫的事》《向日葵》《鸳鸯蝴蝶》。2、曾是一名花样滑冰运动员,和花滑世界冠军...

关于魔塔大陆ova的描述(魔塔大陆ova)

关于魔塔大陆ova的描述(魔塔大陆ova)

今天来聊聊关于魔塔大陆ova,关于魔塔大陆ova的描述的文章,现在就为大家来简单介绍下魔塔大陆ova,关于魔塔大陆ova的描述,希望对各位小伙伴们有所帮助。1、魔塔大陆Ar-Tonelico是日本的DVDRip。2、故事发生在被称为\\整个Soul Shell就是一个完全封闭的空间,没有天空也没有海...

孟古(孟古青真实结局)

孟古(孟古青真实结局)

大家好,小活来为大家解答以上的问题。孟古青真实结局,孟古这个很多人还不知道,现在让我们一起来看看吧!1、孟古在福陵陪葬努尔哈赤的众我后妃中,声名最为显赫的莫过于叶赫纳拉·孟古,她生前是努尔哈赤的第三位大妃(相当于皇后),死后又因其所生的惟一一个儿子皇太极荣登汗位并成为清朝第一帝的缘故,孟古就以初谥为...

关于安顺事件的描述(安顺事件)

关于安顺事件的描述(安顺事件)

今天来聊聊关于安顺事件,关于安顺事件的描述的文章,现在就为大家来简单介绍下安顺事件,关于安顺事件的描述,希望对各位小伙伴们有所帮助。1、2014年9月5日凌晨,贵州安顺市七眼桥镇发生一起警民冲突事件,打斗中该镇派出所两名协警死亡、两名协警受伤。2、该镇派出所工作人员在9月8日向记者确认了这一事实,死...

今夜无眠原唱(今夜无眠原唱歌曲播放)

今夜无眠原唱(今夜无眠原唱歌曲播放)

大家好,小活来为大家解答以上的问题。今夜无眠原唱歌曲播放,今夜无眠原唱这个很多人还不知道,现在让我们一起来看看吧!1、应该不是原唱吧 李老师和戴玉强在央视晚会上唱过。本文到此分享完毕,希望能帮助到大家。...