勾股定理总统证法好的原因(初中勾股定理的总统证法)
大家好,小活来为大家解答以上的问题。勾股定理美国总统证法,勾股定理总统证法这个很多人还不知道,现在让我们一起来看看吧!
1、由直角梯形面积公式,得:直角梯形ABCD面积:S=(a+b)*(a+b)/2=(a+b)²/2又∵ADE面积:=ab/2, CBE面积:=ab/2 ,CDE面积:=c²/2∴直角梯形ABCD面积:S=ab/2+ab/2+c²/2 =(2ab+c²)/2∴ (a+b)²÷2=(2ab+c²)÷2∴ (a+b)²=2ab+c²∴a²+b²+2ab=2ab+c²∴ a²+b²=c²∴ a²+b²=c²扩展资料:1,勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
2、中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
3、2,勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
4、勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
5、3,在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
6、在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
7、参考资料来源:百度百科-勾股定理。
本文到此分享完毕,希望能帮助到大家。
扫描二维码推送至手机访问。
版权声明:文章内容摘自网络,如果无意之中侵犯了您的版权,请联系本站,本站将在3个工作日内删除。谢谢!